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Rational approximation is considered where the (n + m) functions involved are
supposed to be continuous on a general compact set. With the aid of Helly-type
theorems, the approximation viewed as a mathematical program is reduced to one
that is discrete, without any assumption regarding the existence of solutions. This
discrete problem, which is the rational approximation considered on an at most
(n +m) element subset of our compact set, has the same value as the original
problem, while its solution set includes that of the original problem. Moreover, all
the above sets of cardinality at most (n + m) are found by max-inf statements,
where the maximum interchange with the infimum and a finite number of variables
are involved. If the original approximation problem has a solution, then all of its
solutions, as well as all the above-mentioned finite subsets, are expressed by the
saddle points of our minimax statements.

I. INTRODUCTION

The problem of rational approximation on a compact set T is defined as
follows: PI '00" Pn, QI '00', Qm' and f being real continuous functions defined
on T, solve

where 11·1100 denotes the Chebyshev norm.
Since we are dealing with rational approximation on compact sets T' <;; T,
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and the problem is being viewed as a mathematical program, we consider in
this paper the following semi-infinite program peT');

infP(T')~ inf Imax 1
/

(1) ~ X;P(I) II VeE T': /Q(e) > 01 P(T').
x,v I fET' Y Q(t) 1

6 I' ,6, ,r 6 r 6where x= (x!,",.,x n) , J = Uj"",Jrn) , P(t)= (P1(t},··.,Pn(t)) , and Q(t)=
(QI(t), ... , Qrn(t)t·

In the case where T' = T, clearly P(T') is equivalent to (I). When T' is a
finite subset of T, the discretized approximation program P( T'). is here
called a "reduced program:' as this term probably accords better with the
mathematical programming concept. Note that the constraints involved in
peT') are expressed in terms of T' only, and thus the problem P(T') is an
independent program. In this paper we do not assume the existence of
solutions of P(T') for any T' c; T; also we assume no properties of.r P. Q,
and T other than continuity and sequential compactness.

We have two aims. Our first is to apply Helly-type theorems in order to
make a certain reduction (discretization) by finding a subset Til of r
containing no more than (n + m) points such that infP(To) = infP(T), This
equality implies that any minimizing sequence of peT) is a minimizing
sequence of P(To)' Our second aim is to express all the sets To satisfying the
above-mentioned property by max-inf statements. where the maximum
interchange with the infimum and a finite number of variables are involved.
One of these statements involves a Lagrangian havmg a certain differentiable
property, In the case where peT) has solutions, all of them as well as all the
above To sets are expressed by the saddle points of our minimax statements,

The existence of a subset To c; T having at most (n + In) clements and
satisfying inf peT} = inf P(To) is known only in the case where the original
approximation problem peT) has a solution (see 14. 8. 9 J). To the best of the
writer's knowledge, the only result of this type for the case where the original
problem peT) has no solution is that of Krabs (see /8,9 J) who proved the
existence of a subset To c; T having at most (n + In + I) elements and
satisfying infP(T) = infP(T(I}' In Section 2 we improve Krabs' result in the
sense that we delete one more element from the above To subsets. As a
second aspect we use a purely geometrical technique, which is general and
differs from the Kolmogorov principle, Our development is essentially based
on a Helly-type theorem related to the intersection of an infinite number of
convex sets. This theorem, due to Klee, uses the concept of O-closeness (see
[2, 7]).

DEFINITION. A family r of sets is called a-closed if every set in j' is open
and int K E r whenever K is the limit of a convergent sequence of sets in r,
HerethelimitofK"Erislimn~cfKn=UI ini nKn=n, iUi,nKI/.
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KLEE'S THEOREM. Let r be an O-closed family of convex sets in R n.

Then the intersection of all members of r is empty iff there are at most
(n + 1) members of r the intersection of which is empty.

The structure of this paper is as follows. In Section 2 we reduce our
original program P(T) to P(To) having the property already mentioned. In
Section 3 we present two saddle-point theorems expressing all the minimizing
sequences of P(T) and all (n +m)-element sets To by inf-max statements,
where the infimum and the maximum are interchangeable. In the case where
the original approximation problem P(T) has a solution, all its solutions and
all the above To subsets of T are expressed by saddle-point statements. One
of the above theorems uses the Lagrangian presented in theorems and
examples appearing in Section 3 of [6]. The reason why this Lagrangian is
used, is that it has the property of being differentiable (in certain cases) on
an open set containing all its saddle points.

2. THE REDUCTION TO THE FINITE CASE

We begin this section with a lemma which, together with its proof, is
similar to Lemma 2.3 of [2] but is based on slightly modified assumptions
that necessitate certain modifications of the original proof. We also use the
same notation as in [2]. The theorem making it possible to reduce our semi­
infinite program P(T) to the usual one involving (n + m) functions, is proved
in two steps. First, with the aid of the above-mentioned lemma we find an
(n + m + 1)-element subset of T satisfying the desired property. Finally,
using a Helly-type theorem for cones, we delete one more element and obtain
the desired set To.

Krabs' result could be used as the first step of our reduction theorem.
However, we prefer to use a modified version of the Ben-Israel et al. lemma
[21 for the following reasons:

(a) the argument is more general and its range of applicability
includes (semi-infinite) quasi-convex programs. Note that the original lemma
of Ben-Israel et al. has been successfully applied for reducing semi-infinite
convex programs to ordinary ones. Thus, this argument is applicable to a
wider class of approximation problems;

(b) the procedure illustrates a unique technique, which is essentially
the application of Helly-type theorems to reduce (discretize) a Chebyshev
approximation problem.

LEMMA 1. Let a E R and let T be a compact set. Also let g(x, t):
R n X T --> [-00, 00] be a given function satisfying the following properties:
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(A I) for all jixed x E R ", g(x, . ) is upper semicontinuous on T:

(A2) for allfixed IE T:

K(t) g 1x Ig(x, I) < a, x E R" f

is an open convex set and

H(t)~ jx[g(x,t)=a,xER"}

has the property that int H(t) = 0 if K(t) * 0, the superscript indicating
the topological closure;

(A3) for any nonvoid open set ;t' E R" and any fixed t E T: if
g(., t) > a on ro, there are an X oE ro and a vicinity 1'. of t such that

g(xo") > a on 1'.

Then nlET K(t) = 0 implies the existence of t , .... , t k E T such that k ~ n -+- I
and n~_~ I K(tJ = 0.

Proof If there exists t E T such that K(t) = 0. the assertion follows
trivially. Therefore. we consider the second case. which is K(t) * 0 for any
t E T, and thus, by Klee's theorem. it is sufficient to prove that the family

r~ jK(t)itE Tl

is O-closed. Let K(t,,) be any converging sequence and denote K =

lim,,~x K(t,,). We shall prove that int K E r (i.e.. 1t* E T"3 int K = K(t *)).
Let tm be a subsequence of t" such that limm~:i.tm= t* E T. Then

n U K(tm) c n U K(t,,).

U n K(t,,) c U n K(l".).

1:<;;;;, i i <. Tn 1 <,i i<en (2)

I (11('1

This means that limm~cx:K(tm)=K. Moreover, for any xEK(t*) we have
g(x, t*) < a, and thus by (AI), for any m that is large enough, g(x. tm ) < a.
i.e., x E K(tm)' Using (2) we obtain K(t*) c K and thus,

K(t*) c int K. (3)

Furthermore, if K(t*)*intK, then by (3) and the fact that K(t*) is a
convex set,

intlint K\K(t*)] * 0,

(see 121). Applying (A2) we get

0* int[int K\K(t*))\H(t*) c intlint K\(K(t*) U H(t*) )j.
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which implies the existence of an open set 6' c int K such that g(., t*) > a
on 6'. Therefore by (A3), there are an X o E 6' and a vicinity ':!/- of t* such
that g(xo' .) > a on 'J?~. It follows that for any m that is large enough,

which implies that X o f/:. K. This contradicts Xo E 6' c K. Thus, K(t*) = int K,
implying that r is an O-closed family; which completes the proof. I

LEMMA 2. Let ai ERn, i = l,... ,p (n +2 <,p) such that for some z ERn,
ZTa; > 0 for each i = l, ... ,p. We denote by Ji'j' the following sets:

p

,Jij~ n {ylyTa;>O}.
i=l

i*j

Then 0 f/:. ,ff1 + ... + ,ffp •

Proof For any set %' we shall denote by conv,%' and co%',
respectively, the convex hull and the cone generated by the set %. Any
(p - 1) sets belonging to the family

iconv .0 lad ( ,
I ~ 1 J~ l ..... p

;*j

have a joint point. Indeed, for any fixed joE {I,... , p} we have

p

Vj E j 1,...,p}\Uo}: ajo E conv U {ad·
;~ 1

i*j

Thus by Helly's theorem there is ayE R n such that

p p p p

yE nconv U {ail c nco U {ad·
j~l i~1 j~l ;~1

;*j ii'j

Moreover, by our assumption on {a; I i = l,...,p}, y 01= O. Therefore, denoting
by ,%j,j= l, ... ,p the closed cones

we obtain that

R
n

01= LOt co i01 {a;}r= j~--'l [co i01 {adr= j~~l X;~.%
;*j i*j
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(see II I), where the superscript * denotes the polar cones. Thus 0 E int ;f

and, since %;, j = 1.... , p, are open sets,

;fJ + ... + ;fp c int.;f.

which completes the proof. I

LEMMA 3. Let %i c RI;. i = l, ... ,p (n + I <p) be cones. and suppose
that for each j = 1.... , p there are x j E R I; satisfying the conditions:

(a) xi E nr I.i"j%i:

(b) OEconvUf-,]Xif.

Then nf~ I%i * ~O f·

Proof Denote x o'" O. Using Radon's theorem we obtain that there is a
partition II: J I of lO. l,.. .• p I such that

y E '.conv U jxif J Ii Icony U jxd j c n;fi Ii n;f,·l lEI IEJ IE,! lEI

To complete the proof, we remark only that by assumption (b), Y * o. I

For any natural number q we define the following family E q of sets:

THEOREM I (The reduction theorem). Assume that we have a compact
set T, a continuous function f: T --> R, and two continuous vector functions
P:T-->R" and Q:T-->R"'. Suppose that there exists yER'" such that
yIQ(t) > 0 for any t E T. Then

(i) En + '" * 0 (or equivalently there is a finite set To ~ T containing
at most (n + m) distinct points such that infP(To) = infP(T»);

(ii) each subset To S; T satisfying inf P(To) = inf peT) has the properly
that any minimizing sequence of P(T) is a minimizing sequence of P(To).

Proof Define the following function g(x,y: t): R" X R'" X T .. [0. 00 I:

,. 61 Xl pet) Ig(x.). t) = f(t) - -7-·- ,
Y Q(t)

'" CX).

y'Q(t) > O.

otherwise.

(4)

Note that, by our assumption, for any subset T' c T we have
0< inf P(T') < CX) and our program P(T') is exactly

infP(T')= infmaxg(x,y;t).
X.Y lET'

(5 )
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The property (AI) as well as the first part of (A2) are trivially satisfied
(where (x,y) is considered instead of the variable x and a ~ infP(T». For
the second part of (A2) we remark that if for some t E T and two open sets
&1 eRn and &2 c R m,

\I(x,y) E 6; X~: g(x,y; t) = infP(T),

then P(t) = 0 and If(t)/ = P(T), which implies that

{(x, y) Ig(x, y; t) < inf P(T)} = 0.

Remarking that the set

{(x, y) Ig(x, y; t) = inf P(T)}

and its closure have the same interior, the second part of (A2) is satisfied.
In order to show that (A3) holds, we suppose that to E T is given, together

with two nonvoid open sets 6; eRn and ~ c R m such that

\I(x,y) E 6; X~: g(x,y; to) > P(T). (6)

By our assumption Q(tohio 0, which implies that {yTQ(to) lyE ~} is an
open set in R. Therefore, there is a Yo E ~ such that

or

Therefore, by the continuity property of Q(.) there is a vicinity l' . of to such
that one of the following statements holds:

{\It E l' ':y~Q(t) < Of; {\It E 1'-:y~Q(t) > O}. (7)

Let X oE 6;. If the first statement of (7) holds, the definition of g(x, y; t)
clearly yields

\It E 1'-: g(xo' Yo; t) = 00 > inf P(T).

If the second statement of (7) holds, the continuity of g(xo'yo;') on r,
together with (6), yields (A3).

Therefore, applying Lemma I we obtain the existence of t I ,,,., tk E T with
k <: n + m + 1 such that

k

n {(x,y) Ig(x,y; tJ < infP(T)} = 0.
i=l

(8)
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In the case where k = n + m + I we prove the following assertion: there is a
Jo E 11,..., n + m + 1 f such that

n -t m-t I

n \(x.y)!g(X,y;l) < infP(T)f =0.
j I

i:i:j(l

Suppose this assertion to be false. Then for each J E j 1..... 11 -+ m I I / there

is an (xj'Yj) ERn X R m such that

,,+ m-+ I

(Xi' Y) E n j (X. y) ig(X.Y: Ii) < inf P(T) I·
i I

ii;

These sets are cones without origin, n ?:- I, and for each J= 1.. ... II -+ In + 1.

n +m j. 1

Yi E n Lvly/Q(1i»Of.
i 1

l-t)

Therefore. Lemmas 2 and 3 imply

n -t m+ I

n i(x,y)]g(x.y:t j )<infP(T)f*0
i I

which contradicts (8). Thus the above assertion having been proved. and
denoting

it follows that

To ~ i t l , ... , tn • m + I f\Uo/

~ jl!"", l k )

if k = n Tin + L

if k < n + m + I.

infP(T) ~ infP(Tol.

The converse inequality is obtained from

\I (x, y) ERn X R m: max g(x, Y; t) ~ max g(x. y: I),
tETo lET

by taking the infimum by (x, y) on both sides, and also using (5). This
completes the proof of (i). Remarking that the last inequality holds for any
To c; T, the equality infP(T) = infP(To) implies part (ii). I
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In this section we express by inf-max statements all the mlmmlzmg
sequences of P(T) and all the sets To given by the reduction theorem
(Theorem 1). A particular case is derived when Q(. ) == 1 E R. First we define
the function g(x, y; t) as

~ I xTp(t) I
g(x, y; t) = f(t) - yTQ(t) ,

= 00, otherwise,

and for any compact T' S; T, we consider the following program P(T'):

infP(T') ~ inf max g(x,y; t).
X,y lET'

Remark, Since T' is a compact set and Q(t) is a continuous vector
function, then for any fixed y E R m satisfying yTQ(t) > 0 for each t E T',
there exists A= A(Y) > 0 such that yTQ(t) ~ I/A for each t E T'. Therefore,
the following statement is easily seen to be valid.

For any compact set T's; T: inf P(T') = inf P(T'), any minimizing
sequence of P(T') is a minimizing sequence of P(T'), and for any
minimizing sequence (x"y[) of P(T) there are A,=A(y,) > 0 such that for
any PI ~ A [ 1= 1,2,... , PI(X" y[) is a minimizing sequence of P(T'). I

From this point of view, for any compact set T' <:; T, the programs P(T')
and P(T') are equivalent. We shall present two saddle-point theorems for
P(T).

Notation. Denote w ~ min {q IEq oF 0) = min {card To ITo E En +m}. Also
for any a 1 , ... , aq E R, denote

q

V ai~max{al' ...,aq}.
i=1

PROPOSITION 3. Assume, given a compact set T, a continuous function
f: T--ctR, and two continuous vector functions P: T--.R n and Q: T--ctR m

•

Suppose that there is ayE R m such that yTQ(t) > Ofor each t E T. Thenfor
any integer q with w <q <n + m:

(i) infP(T) = infx •y maxI;ET.i=I"",q Vi=l g(x,y; ti) = maxl;ET.i=I, ....q

infX,y Vi=l g(x,y; t i); (9)

(ii) (tl"'" tq ) is a solution of the maximization problem appearing in
(9) iff Ui=dti} E Eq; (xl,y[) is a minimizing sequence of the infimum
problem appearing in (9) iff (XI' YI) is a minimizing sequence of P(T);
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(iii) Ix,y;tj, ... ,tql is a saddle point of (9) ifJ(x,y) is a solution of

P(T) and Ui IUil E E
q
.

Proof Clearly, by our remark,

(,
infP(T)= infmaxg(x,y;I)= inf max V g(x,y;Cil

x. Y 'E I x.)' (iEli I

i J. .. . i/

~ max
tiE 7

i I ....(/

q

inf V g(x,y: Ii)'
r. Y i 1

Thus, for any t, ,.... tq E T. our remark with T' ~ {t, " ..• I q f implies

(I (I

infP(T) ~ inf Vg(x,y; tJ = inf Vg(x,y; IJ
x.),' i I \',y i I

( 10)

Moreover. we obtain equality in (10) exactly for those sets To = 11, ..... 1,,1 E
Eq. The proof is completed by invoking the statement of our remark with

T' ~ T. I

Let t, ,.... 1'1 E T. We have

q

a*=a*(t" .... Cql~ inf Vg(x.y;l;)
X.y i :

\ Ilx7P(ti) - ylQ(tJ/(I;)l ~ ay'Q(ti)'
a· r

I I Y Q(t i );;' I, (x,y) E R" X Rill, Vi = I,.... q. \

or, equivalently. for any fixed 0 < 'I < I and using the notation 13 ~ II (I ~. If)

I
I + a* = infj/J 1131 lAx - DBYI + II V By I ~ By. By ~ Ii. (11 )

where A is q X n matrix, the rows of which are p1(lJ, i = L..., q: B is the
q X m matrix, the rows of which al'e QT(l i ), i = 1, q; and D is the q X q
diagonal matrix, the diagonal of which isf(ti)' i = 1, q. We also denote for
any vector z E R q

,
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(see [6]). For any fixed 0 < IJ < 1 we define a Lagrangian (tacitly depending
on IJ), where r~ (tw" tq ) E Tx ... X T~~,

q_ q. t:. uT(By-l)+sTBy
L -L (x,y,u,s,r)= sT[lAx-DByl+IJ V By)' (12)

In our remaining development we shall use the notation

THEOREM 3. Assume given a compact set T, a continuous function
f: T-.R, and two continuous vector functions P: T-.R n and Q: T-.Rm.
Suppose that there is ayE R m such that y TQ(t) >afor each t E T. Then for
any integer q with w ~ q ~ n + m:

(i) 1/(1 + inf peT»~ = SUPX,y min(U,S)Efiq,TETq Lq(x, y; u, s, r) =
min(U,S)EfiQ,TETO SUPX,y L q(x, y; u, s, r);

(ii) r = (t I"'" tq) is a solution of the minimization problem appearing
in (i) if.TUi=l{td E L q; (xl,y/) is a maximizing sequence of the supremum in
(i) if.T (xi' YI) is a minimizing sequence of peT);

(iii) if lx, y; u, s, r] with r = (t I"'" tq) is a saddle point of L q, then
(x,y) is a solution ofP(T) and Ui=l{td ELq; if (x,y) is a solution ofP(T)
and To E L q then there are s E Llq and u E R~ such that [x,y; u, s, r] (where
the components of r are the points of To) is a saddle point of L q.

Proof For any fixed (x,y) E R n X R m and r E Tq:

(a) if By:} 1, then

min Lq(x,y;u,s,r)=-oo,
(U,S)EnQ

since the denominator in (12) is always positive;

(b) if By >1, then s TBy >a and

sl By
min L q = min -",..,.,------,---,-----,:,..---,-

(U,X)En" w1Q Sl flAx - DByl + By)

I ST lAx _ DByl I' . n+m=1!(I+max T )=1 (.1+ V. g(x,y;tJ).
sELlq S By 1=1

Thus, taking the minimum by r E r and supremum by (x, y) ERn X R m,
Proposition 3 implies

1
1 + infP(T) = sup min L q,



12 JACOB FLACHS

and its maxlmlzmg sequences are exactly the minImizing sequences of
inf peT).

Now let r be a fixed point in r, and consider the program (I J) (which as
has been shown is equivalent to that appearing in (JO». Applying the
particular case J or the example, both appearing in Section 3 of 161, we
obtain

I
---, = min sup L q(x.y; u. s. r).
I + a" (u,s)Ell'l x.v

and the minimum is achieved. The proof is completed by finally recalling the
definition of a* = a*(r) and using Proposition 3. I

Particular Case. We consider the case where Q(.) = J E R. This means
that among jxTp(.) I x E R" f we have to find a function closest to f Since
this set is a finite-dimensional subspace, our problem has a solution. In this
example we calculate our Lagrangian. Clearly, B=(I,.... 1)7. yER.
d ~ DB = (f(t I ), ...J(t II + I)) r, and denoting v = L;'" i u i our Lagrangian is

(r-lj\'"tl u + v (V-I)I'-t-\'
L"+1(x,y;v.s,r)=' ,-,I I , ' = " '. (13)

Sl !Ax - ydl + 'I V Y Sl lAx - ydl + 'I V Y

Any saddle point of (13) satisfies y ~ I, since otherwise. for any fixed x.

min L II' I(X, v; v, s. r) = -00.
SE.1 n - 1./,>o .

T E Tn ~ I

Moreover, the following inequality holds for each fixed s E L1 "' I. rEI'''' I

V ~ 0, x ERn, and 0 <y < I:

\'
L" + \x-. v; L'. s, r) ~ -"--.-.-:-----

- S I IAx - yd I + 'I V Y

I I
= , ~

s' IAx ' - dl + ('I Vy)/y S7 lAx I - dl + I

= L"+ I(X ' , I; 1:. S, r),

where x' ~ (l/y) X, while for y ~ 0 we have

L" l I(X,y; v, s, r) < 0 < L"- ' (x, I; c. s. r).

We conclude that the range of y can be restricted to 1)' I y ~ I f without
affecting either the saddle value or the saddle-point set of (13). Thus, our
minimax statement is

min
x:y> I

min
SE.1 n + I .t:>O

TE Tn - 1

(y - I) u +y

s7jAx-ydl+y'
( 14)
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Furthermore, recalling our P(T) with Q(')== 1, we deduce that if (x,y) is a
solution of P(T), then for any A~ 1, A(X,y) is also a solution. Thus applying
Theorem 2, we deduce that if [x,y; v, s, rJ is a saddle point of (14), then for
any A~ 1, [AX, Ay; v, s, rJ is also a saddle point. It follows that any saddle
point of (14) satisfies v = O. Let X E R II and y ~ 1 be fixed. Then

. (y-l)v+y . y
mm T = mm T .

SELl"+I.V;;'O s lAx - ydl + y SELl"+! s [Ax - ydl + Y
TETn+1 TETff+l

Thus if we restrict the range of v to v = 0, this does not affect the other
components of the saddle points of (14). Hence, our minimax problem is
reduced to

max min
x.y> 1 SEL1n-+ 1

T E Tn + I

Normalizing y = 1, we get

y

inf P(T) = min max ST lAx - dr.
x SE.1 n + 1

T E Tn + I

By Theorem 3, its saddle points express all the solutions of P(T) with
Q(. ) == 1 and y = 1 and all the sets To E Ell + I.

This result can be obtained from the definition of a * using saddle-point
duality for convex programming (actually linear programming) and
following the same technique as in Theorem 3.

We conclude this paper by noting that the reason for presenting a second
saddle-point theorem is the piecewise differentiability of L q and the differen­
tiable property of L w. Suppose that inf P(T) > 0 and let 0 < 1] < 1; denoting
() ~ «() J , ... , ()w), the set

6. W \ II XTp«()i) I T I
Q = DI I (x, y, ()) f«()J - yTQ«()i) I > 0, y Q«()i) > IJ \

is open in R II X R m X TW. Moreover, in view of Proposition 3 and the
minimality of w, it follows that for any r ~ (t] ,..., t w ) with To =
{t] ,... , twf E I:W and any minimizing sequence (x/,Y/) of P(To) we have

for [large enough;

L h' is differentiable in respect of x, y, U, and s at any point of the set
dom L w n Q. Note that dom L w II Q is an open set in R /I X R m X T W and
contains all the points (x/, Y / ; U, s, r) satisfying:
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(1) r=(tl' ...,tW ) with To~lt" ... ,t'<J}EE(";

(2) (x/,Yt) is a minimizing sequence of P(To) for any large enough I:

(3) (xt,Yt:u,s,r)EdomLw.

In particular, if peT) has a solution, dom L (" n Q contains all the saddle
points of L w. If, in addition to our supposition. T is incl~ded in an open set
of a finite dimensional space and the functions J, P, and Q are differentiable
on this open set. then L W is differentiable on dom L 'u n Q. The augmented
Lagrangian appearing in Section 3 of 16\ can also be used, and in that case
the above remark also applies.
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